Nodes Browser

ComfyDeploy: How Pyramid_Noise_For_Inference works in ComfyUI?

What is Pyramid_Noise_For_Inference?

Using pyramid_noise instead of original noise in inference

How to install it in ComfyDeploy?

Head over to the machine page

  1. Click on the "Create a new machine" button
  2. Select the Edit build steps
  3. Add a new step -> Custom Node
  4. Search for Pyramid_Noise_For_Inference and select it
  5. Close the build step dialig and then click on the "Save" button to rebuild the machine

Pyramid_Noise_For_Inference

Using pyramid_noise instead of original noise in inference. / 使用金字塔噪声替代推理中的原始噪声。

Unable to significantly improve lighting effects.I'm sorry... / 不能显著改善光影。对不起...

Author is so tired, it may cost time to response or fix bugs./ 作者最近很累,需要一些时间修复bug或回复,请见谅。


Table of Contents

  1. How To Use
  2. Including
  3. What This Can Do
  4. Adjust Args

How To Use

These samplers can be used as an extension for ComfyUI and WebUI from Automatic1111.

https://github.com/Koishi-Star/Pyramid_Noise_For_Inference

For now can't be used in image2image, I need time to fix some questions.

Unless you want this:

Also doesn't promise better than the others.


But highres can be used.


Including

3 new sampler:

  • sample_euler_pyramid(Base On Euler a)
  • sample_heun_pyramid(Base On Restart) # using code from restart
  • sample_dpmpp_2s_pyramid(Base On DPM++2M a)

What This Can Do

All ancestral steps (like euler_a) can be replaced with Pyramid_Noise. You can also combine pyramid noise with original noise.

Change Original Noise

Replace any original noise with pyramid noise:

addition_noise = torch.randn_like(x)
x = x + pyramid_noise_like2(x)

Change Ancestral Noise

Replace ancestral noise with pyramid noise: Not always like this specially in second_order method.

noise_up = pyramid_noise_like2(noise_sampler(sigmas[i], sigmas[i + 1]))

Pyramid Noise Function

The function that creates pyramid noise:

def pyramid_noise_like2(noise, iterations=5, discount=0.4):
    # iterations * discount less than 2, for example, 4 * 0.3, 8 * 0.15,
    b, c, w, h = noise.shape 
    u = torch.nn.Upsample(size=(w, h), mode="bilinear").cuda()
    for i in range(iterations):
        r = random.random() * 2 + 2  
        wn, hn = max(1, int(w / (r ** i))), max(1, int(h / (r ** i)))
        temp_noise = torch.randn(b, c, wn, hn).cuda()
        noise += u(temp_noise) * discount ** i
        if wn == 1 or hn == 1:
            break  
    return noise / noise.std()  

Use this to create the pyramid noise when sampling from your model, as shown below:

@torch.no_grad()
def sample_euler_a_pyramid3(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1.,
                            noise_sampler=None):
    """using pyramid noise"""
    extra_args = {} if extra_args is None else extra_args
    noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
    s_in = x.new_ones([x.shape[0]])
    addition_noise = torch.randn_like(x)
    # ------------ check here ---------------
    x = x + pyramid_noise_like2(x)
    # ------------ check here ---------------
    for i in trange(len(sigmas) - 1, disable=disable):
        denoised = model(x, sigmas[i] * s_in, **extra_args)
        sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
        if callback is not None:
            callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
        d = to_d(x, sigmas[i], denoised)
        # Euler method
        dt = sigma_down - sigmas[i]
        x = x + d * dt
        if sigmas[i + 1] > 0:
            # ------------ check here ---------------
            noise_up = pyramid_noise_like2(noise_sampler(sigmas[i], sigmas[i + 1]))
            # ------------ check here ---------------
            x = x + noise_up * s_noise * sigma_up
    return x

Adjust Args

You can adjust two arguments: iterations and discount(for now no gui). Generally, make sure that iterations * discount is less than 2 for the best results for Euler pyramid. iterations * discount is less than 1.2 for the others.

maybe some difference with image for different args

Euler pyramid and Euler

step 20

Heun pyramid and DPM2s pyramid

step 10